2,022 research outputs found

    The Effects of Clumping and Substructure on ICM Mass Measurements

    Get PDF
    We examine an ensemble of 48 simulated clusters to determine the effects of small-scale density fluctuations and large-scale substructure on X-ray measurements of the intracluster medium (ICM) mass. We measure RMS density fluctuations in the ICM which can be characterized by a mean mass-weighted clumping factor C = /^2 between 1.3 and 1.4 within a density contrast of 500 times the critical density. These fluctuations arise from the cluster history of accretion shocks and major mergers, and their presence enhances the cluster's luminosity relative to the smooth case. We expect, therefore, that ICM mass measurements utilizing models which assume uniform density at a given radius carry a bias of order sqrt(C) = 1.16. We verify this result by performing ICM mass measurements on X-ray images of the simulations and finding the expected level of bias. The varied cluster morphologies in our ensemble also allow us to investigate the effects of departures from spherical symmetry on our measurements. We find that the presence of large-scale substructure does not further bias the resulting gas mass unless it is pronounced enough to produce a second peak in the image of at least 1% the maximum surface brightness. We analyze the subset of images with no secondary peaks and find a bias of 9% and a Gaussian random error of 4% in the derived mass.Comment: To appear in ApJ

    Caging Mechanism for a drag-free satellite position sensor

    Get PDF
    A disturbance compensation system for satellites based on the drag-free concept was mechanized and flown, using a spherical proof mass and a cam-guided caging mechanism. The caging mechanism controls the location of the proof mass for testing and constrains it during launch. Design requirements, design details, and hardware are described

    Controlling wetting with electrolytic solutions: phase-field simulations of a droplet-conductor system

    Full text link
    The wetting properties of immiscible two-phase systems are crucial in a wide range of applications, from lab-on-a-chip devices to field-scale oil recovery. It has long been known that effective wetting properties can be altered by the application of an electric field; a phenomenon coined as electrowetting. Here, we consider theoretically and numerically a single droplet sitting on an (insulated) conductor, i.e., within a capacitor. The droplet consists of a pure phase without solutes, while the surrounding fluid contains a symmetric monovalent electrolyte, and the interface between them is impermeable. Using nonlinear Poisson--Boltzmann theory, we present a theoretical prediction of the dependency of the apparent contact angle on the applied electric potential. We then present well-resolved dynamic simulations of electrowetting using a phase-field model, where the entire two-phase electrokinetic problem, including the electric double layers (EDLs), is resolved. The simulations show that, while the contact angle on scales smaller than the EDL is unaffected by the application of an electric field, an apparent contact angle forms on scales beyond the EDL. This contact angle relaxes in time towards a saturated apparent contact angle. The dependency of the contact angle upon applied electric potential is in good compliance with the theoretical prediction. The only phenomenological parameter in the prediction is shown to only depend on the permeability ratio between the two phases. Based on the resulting unified description, we obtain an effective expression of the contact angle which can be used in more macroscopic numerical simulations, i.e. where the electrokinetic problem is not fully resolved

    Silent Film Music and the Theatre Organ

    Get PDF

    Recent Developments

    Get PDF
    Under the existing statute Congress has attempted by legislation to encourage the development of HMOs as a viable alternative for the health-care consumer. As is often the casein the political world of Congress, the fanfare accompanying a legislative response has obscured the deficiencies of the answer. This act with its limited appropriations, restricted preemption language,and failure to support profit-making HMOs constitutes an experimental approach to the HMO concept, and therefore, only illusionary support for its development

    Review of Thomas Christensen. Rameau and Musical Thought in the Enlightenment

    Get PDF

    Scale Free Cluster Distributions from Conserving Merging-Fragmentation Processes

    Full text link
    We propose a dynamical scheme for the combined processes of fragmentation and merging as a model system for cluster dynamics in nature and society displaying scale invariant properties. The clusters merge and fragment with rates proportional to their sizes, conserving the total mass. The total number of clusters grows continuously but the full time-dependent distribution can be rescaled over at least 15 decades onto a universal curve which we derive analytically. This curve includes a scale free solution with a scaling exponent of -3/2 for the cluster sizes.Comment: 4 pages, 3 figure

    Branching Instabilities in Rapid Fracture: Dynamics and Geometry

    Full text link
    We propose a theoretical model for branching instabilities in 2-dimensional fracture, offering predictions for when crack branching occurs, how multiple cracks develop, and what is the geometry of multiple branches. The model is based on equations of motion for crack tips which depend only on the time dependent stress intensity factors. The latter are obtained by invoking an approximate relation between static and dynamic stress intensity factors, together with an essentially exact calculation of the static ones. The results of this model are in good agreement with a sizeable quantity of experimental data.Comment: 9 pages, 11 figure

    Roughening of Fracture Surfaces: the Role of Plastic Deformations

    Full text link
    Post mortem analysis of fracture surfaces of ductile and brittle materials on the μ\mum-mm and the nm scales respectively, reveal self affine graphs with an anomalous scaling exponent ζ≈0.8\zeta\approx 0.8. Attempts to use elasticity theory to explain this result failed, yielding exponent ζ≈0.5\zeta\approx 0.5 up to logarithms. We show that when the cracks propagate via plastic void formations in front of the tip, followed by void coalescence, the voids positions are positively correlated to yield exponents higher than 0.5.Comment: 4 pages, 6 figure
    • …
    corecore